
Table of Contents
1. Introduction to Process Mining

1. Process and Data Science
2. Starting Point: Event Logs
3. Process Mining Types

2. Petri Nets: Foundations for Process Modeling
4. Elements of a Petri Net
5. Formal Definition of Petri Nets
6. Syntactic Rules and Semantics
7. Transition Enabling and Firing
8. Typical Network Structures

3. Soundness Analysis of Process Models
1. Reachability Graph
2. Properties for Analysis
3. Workflow Nets
4. Soundness Definition
5. Coverability Graphs

4. Process Discovery: Basic Approaches
6. The Directly-Follow Relation
7. The Alpha Algorithm
8. Limitations of the Alpha Algorithm
9. Evaluating Process Models

5. Advanced Process Discovery Algorithms
1. Dependency Measures
2. Heuristic Mining
3. Causal Nets
4. Region-Based Mining

6. Conformance Checking
1. Token-Based Replay
2. Footprint Comparison
3. Alignments
4. Precision Metrics

7. Mining Additional Perspectives
1. Organizational Mining
2. Decision Mining
3. Time Perspective

8. BPMN and Process Simulation

1. Introduction to Process Mining
1.1 Process and Data Science

Process mining is positioned at the intersection of data science and process science. It aims
to extract knowledge from event logs recorded by information systems to discover, monitor,
and improve real business processes.

The field bridges the gap between:

Process mining acknowledges that processes are everywhere in organizations, from
administrative procedures to healthcare pathways, production workflows, and customer
journeys.

1.2 Starting Point: Event Logs
The foundation of process mining is the event log, which contains records of activities
executed in a process.

An event log typically contains:

Example of a simplified event log:

Case ID Activity Timestamp Resource Other info

123456 Register Request 2023-01-01 10:00 John Priority=High

123456 Examine File 2023-01-01 11:30 Mary Complexity=Low

123457 Register Request 2023-01-01 10:15 John Priority=Medium

4. BPMN Notation
5. Elements of a Simulation Model
6. Simulation Output Analysis
7. Pitfalls of Simulation

Process science: business process management, workflow management, process
automation, and formal methods
Data science: machine learning, data mining, statistics, and artificial intelligence

Case ID: Identifier for the process instance (e.g., order number)
Activity: The action performed in the process
Timestamp: When the activity was executed
Resource: Who performed the activity
Other attributes: Additional information related to the event

Case ID Activity Timestamp Resource Other info

123456 Check Ticket 2023-01-01 14:00 Pete Result=OK

123457 Examine File 2023-01-01 11:45 Mary Complexity=High

1.3 Process Mining Types

Process mining can be categorized into three main types:

Each type serves different purposes and can be applied in various scenarios such as
business process improvement, compliance checking, or bottleneck identification.

2. Petri Nets: Foundations for Process Modeling
2.1 Elements of a Petri Net
Petri nets are a fundamental modeling formalism for representing processes. The key
elements are:

Petri nets provide a balance between formal mathematical foundation and visual intuition,
making them suitable for both analysis and communication.

2.2 Formal Definition of Petri Nets

A Petri net is formally defined as a triple (P, T, F) where:

For a given node x (place or transition), we define:

1. Process Discovery: Extracting process models from event logs to provide a visual
representation of the process. This answers the question "what is actually happening?"

2. Conformance Checking: Comparing observed behavior (event logs) with
normative/expected behavior (process models). This addresses the question "are we
doing what we're supposed to do?"

3. Enhancement: Improving or extending existing process models using information
extracted from event logs. This helps answer "how can we improve the process?"

Places: Represented as circles, indicating conditions or states
Transitions: Represented as rectangles or bars, indicating events or actions
Arcs: Directed edges connecting places to transitions or transitions to places
Tokens: Represented as black dots in places, indicating the current state of the system

P is a finite set of places
T is a finite set of transitions
F ⊆ (P × T) ∪ (T × P) is a flow relation

2.3 Syntactic Rules and Semantics
A Petri net follows these syntactic rules:

The state of a Petri net is defined by its marking:

2.4 Transition Enabling and Firing

The dynamics of Petri nets are governed by transition enabling and firing rules:

Formally, if transition t fires at marking m, the new marking m' is: m'(p) = m(p) - w((p,t)) +
w((t,p)) for all p ∈ P

Where w is the weight function, which for simple Petri nets is 1 for existing arcs and 0
otherwise.

2.5 Typical Network Structures
Petri nets can represent common control-flow patterns:

•x = {y | (y, x) ∈ F} (the preset of x)
x• = {y | (x, y) ∈ F} (the postset of x)

It is a directed graph with two types of nodes: places and transitions
Arcs can only connect places to transitions or transitions to places
Places may hold zero or more tokens

A marking m is a function m: P → ℕ that assigns to each place a non-negative number of
tokens
The initial marking m₀ represents the initial state of the system

1. Enabling Rule: A transition t is enabled at marking m if for all p ∈ •t, m(p) ≥ 1
In other words, each input place must contain at least one token

2. Firing Rule: When an enabled transition t fires:
It consumes one token from each input place
It produces one token in each output place

1. Sequence: Two activities need to occur in a specific order

○→□→○→□→○

2. Choice (XOR-split): One of several paths is chosen

□→○

↗ ↘

These basic structures can be combined to model complex business processes.

3. Soundness Analysis of Process Models
3.1 Reachability Graph
The reachability graph of a Petri net is a state-transition system that represents all possible
markings reachable from the initial marking and the transitions between them.

Formally, a reachability graph is a directed graph where:

The algorithm to construct a reachability graph:

3.2 Properties for Analysis
Several important properties can be analyzed using the reachability graph:

○ □

↘ ↗
□→○

3. Parallel Execution (AND-split and AND-join): Activities can execute concurrently

□→○

↗ ↘
○ □

↘ ↗
□→○

4. Iteration (Loop): Activities can be repeated

○→□→○→□→○

↑ |

└─────┘

Nodes represent markings reachable from the initial marking
Edges represent transitions, labeled with the transition name

1. Label the initial marking m₀ as the root and tag it "new"
2. While "new" markings exist: a. Select a new marking m b. If no transitions are enabled at

m, tag m "dead-end" c. For each enabled transition t at m: i. Obtain the marking m' that
results from firing t at m ii. If m' does not appear in the graph, add m' and tag it "new" iii.
Draw an arc with label t from m to m'

3.3 Workflow Nets
A workflow net is a special type of Petri net tailored to model processes:

A Petri net N = (P, T, F) is a workflow net if:

Workflow nets are particularly useful for business process modeling as they have a clear
starting and ending point and all activities contribute to the completion of the process.

3.4 Soundness Definition

Soundness is a key correctness criterion for workflow nets:

A workflow net N = (P, T, F) with initial marking [i] is sound if:

In terms of the reachability graph:

1. Boundedness: A place p is k-bounded if it never contains more than k tokens. A Petri
net is bounded if every place is bounded.

If k=1, the place (or net) is called safe
If there is no such k, the place (or net) is unbounded

2. Deadlock Freedom: A Petri net is deadlock-free if at least one transition is enabled at
every reachable marking.

A deadlock is a marking with no enabled transitions
3. Dead Transitions: A transition t is dead if it is not enabled at any reachable marking.
4. Liveness: A transition t is live if from every reachable marking, there is a sequence of

transitions that leads to a marking where t is enabled.
A Petri net is live if every transition is live

5. Home-marking: A marking m is a home-marking if from any reachable marking, there is
a path to m.

A Petri net is reversible if the initial marking is a home-marking

1. It has a unique source place i with •i = ∅
2. It has a unique sink place o with o• = ∅
3. Every node in the net is on a path from i to o

1. Option to complete: For any marking reachable from [i], it is possible to reach the
marking [o]

2. Proper completion: The marking [o] is the only reachable marking from [i] with at least
one token in place o

3. No dead transitions: There are no dead transitions in the net

1. is a home marking
2. For each marking m in the reachability graph:

m(o) < 2

An important theorem: A workflow net is sound if and only if its short-circuit net (adding a
transition from o to i) is live and bounded.

3.5 Coverability Graphs

For unbounded Petri nets, the reachability graph is infinite. To handle this, we use
coverability graphs as finite abstractions.

The key idea is to represent unbounded growth of tokens using a special symbol ω, which
denotes "arbitrarily many" tokens.

The coverability graph construction algorithm is similar to the reachability graph algorithm,
with an additional step:

Properties of coverability graphs:

For workflow nets, the presence of ω in the coverability graph indicates unboundedness and
consequently, unsoundness.

4. Process Discovery: Basic Approaches
4.1 The Directly-Follow Relation
The most basic relationship that can be extracted from an event log is the directly-follows
relation, denoted by >:

For activities a and b, a > b if and only if there exists a trace in the log where a is directly
followed by b.

This relation can be represented as a matrix, where the entry at row a and column b
indicates how many times a is directly followed by b in the log.

Example for a log with traces [abcd, acbd, aed]:

if m(o) = 1 then m(p) = 0 for every p ∈ P \ {o}

3. No transition is dead

If, when adding a new marking m, there is a marking m' on the path from the initial
marking to m such that m' < m (m is strictly greater than m' component-wise), then set
m(p) = ω for all places p where m(p) > m'(p)

1. The coverability graph is always finite
2. A transition is dead if and only if it does not appear in the coverability graph
3. A place p is k-bounded if and only if p does not contain more than k tokens in any

marking of the coverability graph

> a b c d e

a 0 2 1 0 1

b 0 0 1 2 0

c 0 1 0 1 0

d 0 0 0 0 0

e 0 0 0 1 0

The directly-follows relation can be used to construct a dependency graph, which is a simple
process model showing which activities follow each other.

4.2 The Alpha Algorithm
The Alpha algorithm is a process discovery technique that extracts a Petri net from an event
log. It extends the directly-follows relation with additional relations:

The algorithm steps are:

The result is a Petri net that captures the behavior observed in the event log.

1. Causality (→): a → b if a > b and not b > a
2. Parallel (∥): a ∥ b if a > b and b > a
3. Choice (#): a # b if not a > b and not b > a

1. Identify the set of activities T_L in the log L
2. Identify the set of start activities T_I (activities that appear at the beginning of at least one

trace)
3. Identify the set of end activities T_O (activities that appear at the end of at least one

trace)
4. Create the footprint matrix showing the relations →, ∥, and # between all pairs of

activities
5. Identify sets of activities (A, B) where:

A and B are non-empty subsets of T_L
For all a in A and b in B, a → b
For all a1, a2 in A, a1 # a2
For all b1, b2 in B, b1 # b2

6. Minimize these sets to get maximal pairs (A, B)
7. For each maximal pair (A, B), create a place p_(A,B) in the Petri net
8. Add a source place i and connect it to all start activities
9. Add a sink place o and connect all end activities to it

10. Connect each activity in A to place p(A,B), and connect place p(A,B) to each activity in B

4.3 Limitations of the Alpha Algorithm

The Alpha algorithm has several limitations:

More advanced algorithms have been developed to address these limitations.

4.4 Evaluating Process Models

Process discovery aims to balance four quality dimensions:

These dimensions often conflict with each other, requiring a balance based on the specific
use case.

5. Advanced Process Discovery Algorithms
5.1 Dependency Measures

Advanced process discovery algorithms often use dependency measures to quantify the
strength of causal relationships between activities.

The dependency measure between activities a and b is defined as:

a ⇒ b = (a > b - |b > a|) / (a > b + b > a + 1) if a ≠ b a ⇒ a = a > a / (a > a + 1) if a = b

1. Implicit Places: It cannot discover implicit places (places that don't add constraints)
2. Loops of Length 1 or 2: It cannot handle short loops correctly
3. Non-local Dependencies: It cannot discover dependencies between activities that are

not directly following each other
4. Noise Handling: It does not consider frequencies, so rare behaviors have the same

impact as frequent ones
5. Incompleteness: It requires the log to contain a "complete" set of behaviors

1. Fitness: The model's ability to replay the observed behavior in the log
A model with perfect fitness can reproduce all traces in the log
Low fitness means that the model cannot explain all observed behavior

2. Precision: The model's ability to avoid allowing behavior not observed in the log
A model with perfect precision only allows behavior seen in the log
Low precision means the model allows for more behavior than seen in the log
(underfitting)

3. Generalization: The model's ability to generalize beyond the observed examples
Good generalization means the model can handle unseen but similar behavior
Poor generalization leads to overfitting to the specific examples in the log

4. Simplicity: The model's structural complexity
A simple model is easier to understand and analyze
Complex models might be more accurate but harder to work with

Where:

Properties of the dependency measure:

This measure allows for filtering out weak dependencies, which might be due to noise.

5.2 Heuristic Mining
Heuristic mining builds on the dependency measures to construct a process model. The
main steps are:

Advantages of heuristic mining:

The approach uses windows around activities to learn how they are connected to other
activities, capturing local patterns to infer the overall process structure.

5.3 Causal Nets

Causal nets (C-nets) provide a notation that can represent a wider range of behaviors than
Petri nets.

A C-net consists of:

Each activity has:

a > b is the number of times a is directly followed by b
|b > a| is the number of times b is directly followed by a

If a > b = b > a (parallel), then a ⇒ b = 0
If a > b >> b > a (strong causality), then a ⇒ b ≈ 1
a ⇒ b = -(b ⇒ a)

1. Calculate the dependency measures between all pairs of activities
2. Apply thresholds to filter out weak dependencies
3. Learn splits and joins based on the dependency graph
4. Convert the resulting representation to a Petri net or other process model

Considers frequencies, so it's more robust to noise
Can handle short loops correctly
Produces models that focus on the main behavior

Activities (nodes)
Causal dependencies (arcs)
Input and output bindings for each activity

Input bindings: Sets of activities that must all complete before the activity can execute

C-nets use the concept of obligations:

The advantage of C-nets is their ability to represent complex dependencies and choices not
easily captured by Petri nets.

5.4 Region-Based Mining

Region-based mining approaches process discovery differently by first constructing a
transition system from the event log and then converting it to a Petri net.

The main steps are:

Advantages of region-based mining:

Limitations:

6. Conformance Checking

Output bindings: Sets of activities that may be enabled after the activity completes

An obligation (a,b) means activity a has occurred and activity b needs to occur later
Activities fulfill obligations from their input bindings and create obligations for their output
bindings

1. Construct a transition system from the event log:
States represent process states (can be defined in different ways, e.g., as the set of
activities executed so far)
Transitions represent moves from one state to another by executing an activity

2. Identify regions in the transition system:
A region is a set of states where all transitions with the same label either all enter, all
exit, or all don't cross the region
Each region corresponds to a place in the Petri net

3. Construct a Petri net:
Each activity in the log becomes a transition
Each minimal non-trivial region becomes a place
Add arcs based on how transitions enter or exit regions
Place tokens in regions containing the initial state

Can discover complex control flow patterns
Provides a clear formal basis for process discovery
Can be tailored by choosing different state representations

Sensitive to the state representation chosen
Can produce large or overly-complex models
May require post-processing to get a workflow net

6.1 Token-Based Replay

Token-based replay is a technique for checking how well a process model fits an event log
by replaying the traces on the model.

The approach uses four counters:

For each trace in the log:

Fitness at the trace level is calculated as: fitness = 1 - (m/c + r/p)/2

Fitness at the log level is calculated by aggregating the counters across all traces: fitness = 1
- (sum(m)/sum(c) + sum(r)/sum(p))/2

Perfect fitness (1.0) means all traces can be replayed without missing or remaining tokens.

6.2 Footprint Comparison
Another approach to conformance checking is comparing the footprint of the log with the
footprint of the model.

The footprint matrix shows the relationships (→, ∥, #) between all pairs of activities.

Steps:

This approach is simple but has limitations:

p: produced tokens (including initial tokens)
c: consumed tokens
m: missing tokens (tokens added to enable transitions that should fire)
r: remaining tokens (tokens left in the net after replay)

1. Begin with the initial marking
2. Try to fire transitions corresponding to the activities in the trace
3. If a transition is not enabled but should fire, add missing tokens
4. After replay, count remaining tokens

1. Create the footprint matrix for the log
2. Create the footprint matrix for the model
3. Count the number of cells where the matrices differ
4. Calculate conformance as: 1 - (number of differing cells) / (total number of cells)

It doesn't pinpoint exactly where deviations occur
It's not suitable for models with invisible transitions or duplicate activities
It provides a global view but not detailed diagnostics

6.3 Alignments

Alignments provide a more sophisticated approach to conformance checking by finding the
optimal match between traces in the log and possible execution paths in the model.

An alignment is a sequence of pairs (a,b) where:

The three types of moves in an alignment are:

The goal is to find an optimal alignment that minimizes the cost of non-synchronous moves.
The cost function typically assigns:

Fitness based on alignments is calculated as: fitness = 1 - (cost of optimal alignment) / (cost
of worst alignment)

Where the worst alignment consists of:

Alignments provide detailed diagnostics about where and how traces deviate from the
model.

6.4 Precision Metrics

Precision measures how much behavior the model allows that was not observed in the log.

The alignment-based approach to precision:

Formally:

a is an activity in the log (or ≫ for "no match")
b is an activity in the model (or ≫ for "no match")

1. Synchronous move: Both log and model execute the same activity (a,a)
2. Move on log: An activity occurs in the log but not in the model (a,≫)
3. Move on model: An activity occurs in the model but not in the log (≫,a)

Cost 0 to synchronous moves
Cost 1 to moves on log and moves on model
Cost ∞ to illegal moves (a,b) where a≠b and a≠≫ and b≠≫

Moves on log for all events in the trace
Moves on model for a shortest path from the initial to the final marking

1. Replay the log on the model, creating a state space
2. At each state, count:

The number of activities actually observed to follow (used_beh)
The number of activities allowed by the model to follow (allowed_beh)

3. Calculate precision as the weighted average of used_beh/allowed_beh across all states

precision(L,M) = Σ(s∈S) freq(s) × (|{s' | (s,s')∈E and freq(s')>0}| / |{s' | (s,s')∈E}|) / Σ(s∈S)
freq(s)

Where:

A precision of 1.0 means the model only allows behavior observed in the log, while lower
values indicate the model allows for more behavior than seen in the log.

7. Mining Additional Perspectives
7.1 Organizational Mining
Organizational mining extracts knowledge about resources (people, systems) involved in
process execution. Key techniques include:

The handover of work relation is defined based on eventual dependencies between
activities. For a trace σ, a handover between resources a and b exists if:

This can be represented as a matrix showing the frequency of handovers between
resources.

7.2 Decision Mining

Decision mining (also called decision point analysis) aims to discover the rules governing the
choices made in a process.

S is the set of states
E is the set of edges in the state space
freq(s) is the frequency of state s in the log

1. Resource-Activity Matrix:
Shows which resources perform which activities and how frequently
Can be used to identify roles by clustering resources with similar profiles

2. Social Network Analysis:
Handover of work: Measures how frequently work is transferred from one resource to
another
Working together: Identifies resources that work on the same cases
Similar task profiles: Finds resources that perform similar activities

3. Organizational Model Mining:
Discovers the organizational structure and roles
Identifies groups and hierarchies

a performs an activity that has an eventual dependency with an activity performed by b
No other activity in between has an eventual dependency with the activity performed by
b

The approach:

For example, at a decision point with branches to activities A and B, we collect cases where
A was chosen and cases where B was chosen, along with their data attributes. A decision
tree can then reveal rules like:

Decision mining can:

7.3 Time Perspective

Time perspective mining extracts temporal patterns and performance information from event
logs. Key aspects include:

The approach typically involves:

1. Identify decision points in the process model (e.g., places with multiple outgoing arcs in a
Petri net)

2. For each decision point, collect data attributes available at the time the decision was
made

3. Apply machine learning techniques (e.g., decision trees) to find rules that explain the
choices

If amount > 1000 then choose A
If amount ≤ 1000 then choose B

Make process models more precise by adding guards
Provide insights into decision-making patterns
Identify data attributes that influence process flow

1. Processing Times (Service Times): How long activities take to complete
Calculated as the difference between the completion and start timestamps of an
activity

2. Waiting Times: How long cases wait between activities
Calculated as the time between the completion of one activity and the start of the
next

3. Cycle Times: Total time from the start to the end of a case
Calculated as the difference between the timestamps of the first and last events

4. Bottleneck Analysis: Identifying activities or paths with long waiting times
5. Resource Utilization: How busy resources are over time

1. Replaying the log on the model to align events to model elements
2. Collecting time statistics for activities, transitions, and places
3. Analyzing the distributions of these times
4. Visualizing the results using techniques like heatmaps

This information can be used to:

8. BPMN and Process Simulation
8.1 BPMN Notation

Business Process Model and Notation (BPMN) is a standard graphical notation for business
process models. The key elements are:

BPMN uses token semantics similar to Petri nets:

BPMN can be mapped to Petri nets, though some BPMN constructs (like OR-joins and
complex event handling) are more difficult to represent directly.

8.2 Elements of a Simulation Model
Process simulation extends process models with additional information to enable
performance analysis:

Identify bottlenecks and inefficiencies
Set realistic service level agreements
Optimize resource allocation
Improve process performance

1. Events: Things that happen instantaneously
Start events: Trigger the process
End events: Indicate the end of the process
Intermediate events: Occur during the process

2. Activities: Work performed in the process
Tasks: Atomic activities
Sub-processes: Composite activities

3. Gateways: Control the flow of the process
Exclusive gateways (XOR): One path is chosen
Parallel gateways (AND): All paths are executed simultaneously
Inclusive gateways (OR): One or more paths are chosen

4. Sequence Flows: Connect activities to show the order of execution
5. Pools and Lanes: Represent organizations and roles/departments

Tokens are created by start events
They flow through the process
They are removed by end events

1. Processing Times of Activities:
Fixed values or probability distributions (normal, exponential, etc.)

These parameters can be estimated from event logs using process mining techniques.

8.3 Simulation Output Analysis
Process simulation generates various performance metrics:

The results can be visualized using:

Simulation supports "what-if" analysis by comparing different scenarios:

The choice of distribution depends on the nature of the activity

2. Branching Probabilities:
Probability of taking each path at decision points
Can be derived from event logs

3. Arrival Rate of Process Instances:
How frequently new cases arrive
Often modeled as an exponential distribution
May include a calendar (e.g., business hours only)

4. Resource Pools:
Number of resources available
Working hours/calendar
Cost of resources

5. Assignment of Activities to Resources:
Which resources can perform which activities
Priority rules for task assignment

1. Cycle Time: Total time to complete a process instance
Average, minimum, maximum, and distribution

2. Activity Waiting Times: How long activities wait before being executed
Identifies bottlenecks and resource constraints

3. Resource Utilization: Percentage of time resources are busy
Helps identify over/under-utilized resources

4. Costs: Total process costs based on resource usage and activity costs
5. Throughput: Number of cases completed per time unit

Histograms: Show distributions of times
Heatmaps: Highlight bottlenecks or high-cost activities
Resource utilization charts: Show how busy resources are over time

What if we add more resources?
What if we change the process structure?
What if the arrival rate increases?

8.4 Pitfalls of Simulation

Process simulation has several challenges and limitations:

Best practices include:

Exam Format and Preparation
The course evaluation consists of:

1. Stochasticity:
Results vary between simulation runs
Need multiple runs to get reliable results
Should calculate confidence intervals
Need to account for warm-up and cool-down periods

2. Data Quality:
Simulation results are only as good as the input data
Estimation of parameters may be inaccurate
The "closed-world assumption" might not hold

3. Model Simplification:
Models necessarily simplify reality
Some dependencies and constraints might be missed
Human behavior is complex and not always predictable

4. Validation:
Difficult to validate simulation results against reality
Should compare simulation of current situation with actual performance

Using multiple simulation runs
Calculating confidence intervals
Removing warm-up and cool-down periods
Validating the model against historical data before making predictions
Being cautious about the limitations and assumptions of the model

1. Written Exam (60% of the grade):
Covers theoretical concepts and exercise applications
Includes questions on Petri nets, process discovery, conformance checking, and
additional perspectives

2. Project (40% of the grade):
Practical application of process mining techniques
Requires a minimum grade of 18/30 to be admitted to the written exam

Sample exam questions typically cover:

Preparation tips:

Process modeling using Workflow Nets
Process discovery using the Alpha algorithm
Region-based mining
Calculating model precision
Analyzing organizational perspectives

Practice creating and analyzing Petri nets for soundness
Understand the limitations of different process discovery algorithms
Be able to apply conformance checking techniques manually
Know how to interpret process mining results from different perspectives

